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The aging process is controlled by conserved 
genes and pathways

Kenyon et al. Nature 1993
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• What genes and cellular pathways influence 
aging and longevity?

•How are different genetic aging factors
integrated to one another?

• Which genes and pathways mediate lifespan
extension by dietary restriction?



Yeast is one of the most useful model
organisms used in aging research
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n = Replicative lifespan

Replicative lifespan (RLS):  
Number of mitotic divisions

Chronological lifespan (CLS):
Number of days viable in stationary phase

t = Chronological 
lifespan

Time

S. cerevisiae



Measuring the chronological lifespan of
yeast is a laborious procedure



We have introduced a high-resolution strategy to 
characterize the chronological lifespan of yeast

Garay et al. PLoS Genetics 2014

Relative
lifespan



We use an automated cell-assay station to 
scale-up our genetic analyses of aging in yeast



We use an automated cell-assay station to 
scale-up our genetic analyses of aging in yeast



We screened the entire yeast genome for
lifespan phenotypes
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Our large-scale single-knockout screen reveals that a 
substantial fraction of the genome influences lifespan

Long-lived
knockouts
(7%)

Short-lived
knockouts
(13%)



We identified novel processes that influence lifespan
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The systematic characterization of double knockouts 
informs on functional gene associations 
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A genetic interaction network describes functional 
associations within and between longevity pathways

Core ATG

CVT pathway

PIP

Signaling

Positive genetic
interaction

Negative genetic
interaction

In our pipeline: A pairwise interaction
map of ~160 genes generated with
>22,000 lifespan phenotypes



The novel longevity factor Arv1 extends lifespan 
by mediating autophagy function 

Expected lifespan, Larv1 x Lx
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Gene-environment interactions inform on mechanisms 
of lifespan extension by dietary restriction

Age, days

Non-restricted Dietary restriction

Age: 27yrs

Colman et al. Science 2014



We revealed novel mechanisms of cellular-lifespan 
extension by dietary restriction
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The new longevity factor Swr1C mediates lifespan
extension by dietary restriction

Dietary restriction

Swr1C

Longevity
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76 double knockouts:  swr1,y

We used double-mutant analysis to explore the
associations of Swr1C with other aging factors
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The Swr1C histone-exchange complex is required for
pre-rRNA processing and tRNA transcription

X

Swr1C
Swr1C Dietary restriction

Swr1C

Longevity

Cellular translation



STE12 overexpression

STE12 deletion

STE12 deletion

 
rnk    TF enrichment (p<0.05) 

1 Ace2 Cytokinesis 

2 Ash1 Histone acetylation 

3 Tec1 Filamentous growth 

4 Sfp1 Ribosomal biogenesis 

5 Ste12 Mating 

6 Bas1 Purine biosynthesis 

7 Snf6 Chromatin remodeling 

8 Msn2 Stress response 

9 Yrm1 Multidrug resistance 

10 Gcn4 Amino acid biosynth. 

11 Ixr1 Response oxygen 

12 Abf1 Chromatin remodeling 

13 Msn4 Stress response 

14 Rap1 Chromatin silencing 
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We uncovered a defined set of transcription factors that 
control cellular response to dietary restriction
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The transcription factor Ste12 mediates cell-cycle arrest 
and lifespan extension in response to nutrient limitation
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RNAseq-analysis reveals possible targets 
downstream of Ste12

Condition: Dietary restriction



Dietary restriction

Tor

Longevity

Rim15

Nutrients

Sch9

Ras

PKA

Ste12

Cell-cycle arrest, more?

Gis1, Msn2, 4 Other TFs

SOD, autophagy, etc. Other processes?

?
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